Pursuit affects precision of perceived heading for small viewing apertures
نویسندگان
چکیده
We investigated the interaction between extra-retinal rotation signals and retinal motion signals in heading perception during pursuit eye movement. For limited viewing aperture, the variability in perceived heading strongly depends on the pattern of motion directions. Heading towards a point outside the aperture generates nearly parallel aperture flow. This results in lower precision of perceived heading than heading that renders the radial pattern of flow visible. We ask if the precision is limited by the pattern of flow visible on the retina or that on the screen. During fixation, the two patterns are identical. They are decoupled during pursuit, since pursuit changes radial flow within the aperture on the screen into nearly parallel flow on the retina, and vice versa. The extra-retinal signal is known to reduce systematic errors in the direction of pursuit, thus compensating for the rotational flow during pursuit. We now ask if the extra-retinal signal also affects the precision of heading percepts. It might if at the spatial integration stage the rotational flow has been subtracted out already. A compensation beyond the integration stage, however, cannot undo the change in retinal motion directions so that an effect of pursuit on precision cannot be avoided. We measured the variable and systematic errors in perceived heading during fixation and pursuit for a frontal plane approach, while varying duration, dot lifetime and aperture size. We found precision is effected by pursuit as much as predicted from the pattern of retinal flow, while compensation is significantly greater than zero. This means that the interaction between the extra-retinal signal and visual motion signals takes place after spatial integration of local motion signals. Furthermore, compensation increased significantly with longer duration (0.5-3.0 s), but not with larger aperture size (10-50 degrees ). A larger aperture size did increase the eccentricity of perceived heading.
منابع مشابه
Heading and path percepts from visual flow and eye pursuit signals
The percept of self-motion through the environment is supported by visual motion signals and eye movement signals. The interaction between these signals by decoupling of the eye movement and the pattern of retinal motion during brief simulated ego-movement on straight or circular trajectories was studied. A new response method enabled subjects to report perceived destination and perceived curva...
متن کاملMotion coherence affects human perception and pursuit similarly.
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursui...
متن کاملThe appearance of figures seen through a narrow aperture under free viewing conditions: effects of spontaneous eye motions.
When moving figures are occluded and revealed piecemeal as they move across a narrow slit, observers may perceive them as integrated but distorted. They may also perceive much more of the figure as simultaneously visible than is actually presented at any moment. We obtained quantitative measures of both the perceived distortion and perceived simultaneity under free viewing conditions and relate...
متن کاملModeling depth from motion parallax with the motion/pursuit ratio
The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax ...
متن کاملA Modified Hybrid MoM-Modal Method for Shielding Effectiveness Evaluation of Rectangular Enclosures with Multiple Apertures
A new hybrid modal-moment method is proposed to calculate fields penetrated through small apertures on rectangular metallic enclosures. First, the method of moments is used to numerically solve the governing electric field integral equation for the equivalent two-dimensional surface-current distributions on the surface of metallic enclosure including any number of rectangular apertures of arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 41 شماره
صفحات -
تاریخ انتشار 2001